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AbsIracL We study a nonlinear l angn in  model for interface dynamics where relaxation 
is conrrolled by surface diffusion. While the linear parl ol  the model can be solved 
anaiyiically, a renormalization group analysis on the nonlinear model d m  not yield a 
stable fued point. We have thus solved the model numerically in both WO and three 
spatial dimensions. The dynamical scaling exponents and scaling functions are evaluated. 
We compare our model lo that p r o p d  by h i  and Das Sarma which may be relevant 
to the long-time, largedistance behaviour of surface gmwth by molecular beam epitaxy 
(mej pmcsses. 

1. Introduction 

Thin films are usually grown by deposition of a t o m  from a vapour onto a substrate. 
While atomistically smooth and layer-by-layer growth is desired, one often obtains 
surfaces that are rough. The amount of roughness depends on a variety of physical 
processes during growth, such as the presence of thermal fluctuations [l, 21, kinetic 
effects due to uncertainties in intensity of the incoming atomic beam [3], long range 
screening effects [4,5], and the presence of quenched impurities [6]. A thorough 
understanding of the roughening phenomena obviously has great practical importance 
and has attracted intense theoretical and experimental research over the last few 
years [7,8]. On the theoretical side, it is found that growing interfaces often 
dynamically evolve into self-affine Structures so that correlation functions of the 
interface shape show dynamic scaling [7,9], enabling one to use ideas commonly 
used in critical phenomena. As a result it is possible to define universality classes 
using quantities such as the scaling functions and exponents: models in the same class 
share the same exponents and functions. 

Kinetic roughening has been studied theoretically using two major approaches. 
The goal being to study the long wavelength and long time behaviour of a growing 
interface. First, one may use microscopic models to mimic the process of atomic 
deposition, and this is often achieved using computer simulations. The method 
usually requires a Hamiltonian which accounts for the essential interactions between 
the particles and the substrate. Interface growth being a far from equilibrium 
phenomenon, one normally breaks detailed balance in a simulation by introducing 
various growth rules which capture certain experimental realities. A typical example 
is the restricted solid-on-solid model (RSOS) studied by Kim and Kosterlitz [lo]. 

A second approach for studying the kinetic roughening of a growing interface is to 
write down a stochastic partial differential equation for the evolution of the interface 
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shape. This is usually guided by the symmetry of the problem. A representative 
model is the well known Kardar-Parisi-Zhang (KPZ) equation [ll] which describes 
the time evolution of an interface shape h ( z , t )  
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ah 
- at =uV2h+;X(Vh)Z+q(z , t )  (1) 

where ( z , t )  is the space time point, and q(z, t )  is a stochastic term which mimics, 
say, the fluctuation in the incoming atomic beam intensity; q satisfies Gaussian 
statistics 

M Z , t ) )  = 0 
(2) 

(q ( z , t )q ( z ' , t ' ) )  = 2 0 6 ( z  - 2')6( t  - t ' )  

where U, X and D are constants. 
Perhaps the simplest quantity which shows interesting dynamic behaviour is the 

interface width defined as the mean-square-deviation of interface shape: W ( L , t )  = 
[ ( ( (h ( i )  -x)z))]'/z, where h ( i )  is the interface height at the position i. For both 
the RSOS and KPZ models, the width has been found to obey dynamical scaling [9], 
W ( L , t )  = LXF(z )wherez=  t / L * , L  isthelinearsystemsizeandtistime. F ( z )  
is the scaling function and x and z are the scaling exponents. At large times we have 
F ( m )  - constant, thus W - LX. For x > 0, W increases as L increases thus the 
interface is rough. At intermediate times and large system size, F ( z )  -t x X l Z ,  or 
W - t p  with p = x / z .  Much theoretical attention is paid to the values of these 
exponents for different interface models. 

The wz equation successfully describes many interface growth models such as 
the RSOS model and various ballistic deposition models [8]. Common to all these 
microscopic models is the surface relaxation mechanism which is dominated by 
desorption. In the hydrodynamic limit, desorption is conveniently modelled [3] by 
the linear (first) term in equation (1). However, if the relaxation mechanism is 
dominated by surface diffusion, such as in the molecular-beam-epitaxy (MBE) process 
where the growth temperature is rather high, a generalization of (1) is needed. 

Recently, Lai and Das Sarma proposed a hydrodynamic model [12] where 
the surface relaxation is  due to  diffusion, i.e. the linear term in the equation is 
proportional to V4h. With a choice of a nonlinear term, their nonlinear model can 
be solved exactly. The exactness of their solution is due to the fact that two of the 
three parameters in their model are not renormalized so that exponents x and z can 
be obtained directly from a scale transformation of the equation [13]. Indeed, these 
exponents are quite different from those given by the KPZ model [12]. 

111 L L l W  pap,, WL. pupuJc LllU " L Y U Y  L lllUUCl ,U, Ulllr.. I l l l C l l ~ L &  Uy"LL"1.W "ll.,..., 

surface relaxation is controlled by diffusion. The nonlinear term in the equation is 
different from that studied by Lai and Das Sarma and is motivated hy microscopic 
considerations (see below). The deterministic part of our equation is similar to the 
so called local model for dendritic crystal growth if the MullinsSekerka instability is 
turned off [14,15]. A renormalization group analysis on the equation does not give a 
stable infra-red k e d  point, we have thus solved the equation numerically in both two 
and three spatial dimensions. In the physically relevant three dimensions, we obtain 
x = 0.82 f 0.03 and p = 0.22 f 0.01. In the next section we propose the model; the 
results will then be presented. Finally we compare our results to those of Lai and 
Das Sarma [12]. 
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2. The model and results 

Surface diffusion implies a conservation of mass: the local growth rate is proportional 
to thedivergence of a current, i.e. a h / &  a -V.j. For the problem we are interested 
in here, the current j is the gradient of the chemical potential [3] p - V2h,  thus 
we have ahla1 a -V4h. Assuming that the surface is growing because there is an 
external beam of particles striking it, the growth rate should also be proportional to  
the beam intensity f = fu + q, wiere fu i i a  constant and 7 is random which mimics, 
say, a small fluctuation in the beam intensity. We can then write 

a h  - = -vV4h + q(z, 1 )  at (3) 

where we have rescaiea the neignt variaiiie: it -+ h + jut, Le. it in oj is now 
measured from its average. v and D are constants. We further assume that the noise 
q(z, 1 )  satisfies Gaussian statistics (2). Equation (3) is linear and various height- 
height correlation functions can be obtained exactly. In particular, the exponents 
characterizing the scaling form of the interfacial width are obtained, x = (4 -  d ) / 2 ,  
p = (4- d ) / 8 ,  and z = 4, where d is the dimension of the interface (d  + 1 is the 

If we consider the right hand side of (3) as the linear term of a gradient expansion 
of some general functional of h, such as discussed by Grinstein [16], then various 
nonlinear terms may contribute to changing the scaling behaviour. While many 
of the nonlinear terms are irrelevant in the hydrodynamic limit in the sense of 
renormalization group transformations, some are important and must be included. 
The KPZ equation is a good example in this regard. 

r,."r:"l A:...amO:,.", 
"yoL,"  "L....AL1'".,,. 

F l y r e  1. A sketch of an interface step: there is 
an effective potential barrier near a step (point A). 
Because of this barrier, it is easier for atoms to 
Row away from A than to jump over to the lower 
layer. Atoms deposited on the lower layer may R o w  
to position B since it is a potential valley. U 

We could get more insight into the physical process in question by considering 
the following situation. It has been shown both experimentally and from 
simulations [17; 18!, that atoms landing a t  a kink on the surface prefer to flow on the  
same layer, rather than to jump over the kink to the lower layer. This is because 
there is usually an effective potential barrier at the kink [19], as schematically shown 
in figure 1. While this effect is of little concern when one is considering growth in 
the hydrodynamic limit, we can nonetheless use it to motivate a choice of a nonlinear 
term for equation (3). For a kink on the interface, say h - tanh(z), figure 2 
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P C r e  2. A qualilalive description of the local surface shape and its various derivatives. 
(a) h ( z )  - lanh(z), i.e. a kink on the interface. ( b H r )  Various derivatives of h ( z ) .  
(e) is included in the interface equation. 

shows a number of its derivatives [12]. Since we are interested here in cases where 
either side of the kink grows but not the places with steep spatial gradients, a term 
l i e  figure 2(d) is ruled out. Furthermore, by power counting there are only a few 
choices which are relevant in the sense of a renormalization group transformation. 
In the following we shall study the consequence of adding a nonlinear term like that 
shown in figure 2(e), i.e. (V’h)’, to equation (I). The MBE model of h i  and Das 
Sarma uses the nonlinear term shown in figure Z(c), which satisfies the necessaly 
conservation condition required by MBE. However, from the point of view of driven 
interface dynamics and universality, a study of the nonlinear term of figure 2(e) is 
of as much interests. While the shape of the nonlinear terms are similar, we show 
below that the scaling exponents are quite different 

A second motivation of choosing figure 2(e) as the nonlinear term is the 
observation that the local curvature of the interface n - V Z h ,  thus (3) gives a 
local growth rate U w -uV’K + . . .. Xiking this as an expansion on local curvature 
and considering only the simplest nonlinear term, we have 115) v = UV’K + A d + .  . .. 
The nonlinear term is essentially that given by figure 2(e). This growth rate is similar 
to that of the well known local model for dendritic crystal growth, the only difference 
being that we have turned off the MullinsSekerka instability [14]. Thus a study of 
this problem may also offer insights into the surface roughening phenomena of a 
large growing dendrite [U, 201. 

In the following we will study the interface growth model described by the 
nonlinear partial differential equation 

A dynamical renormalization group analysis was carried out in order to study the 
scaling behaviour of the above equation, using the technique of Forster et a1 [13], for 
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details see [a]. Here we simply quote the main conclusion of that analysis. After 
a scale transformation z' -+ e'z, t' -+ e"t, and h' -+ cx'h, the following recursion 
relations to one-loop order were found 

du 
dl 
- = u [ z  - 4 + !K,X2] 

dD -=  D j z - i x - d + j l t d A  1 *? 7 2 .  1 
dl 

(5) 

(6j 

-X[z+X-4+KdX2] (7) 
dX 
dl 
_ -  

where Kd = S , / ( ~ X ) ~  and S, is the surface area of a d-dimensional unit 
sphere. From these the recursion relation for the effective coupling constant x = ( X ' D / U ~ ) ' / ~  

(8) 
d x  - - = X[(4- d ) / 2 +  iKdX2] .  dl 

Since the second term on the right hand side of (5) is always positive, no stable 
Eez=c&yh! ?,& 3 s&T,$ar := :he sipGa~G=n =f 

the KPZ equation in d = 2. Furthermore, there is no simple hyperscaling relation 
between z and x. 

Be*n: a c  he fesn$ f3: d 6 4, 

Figure 3. (0) A typical shape of a surface generated by our model at lime t = 1000. 
linear system size L = 1M) and time step At = 0.01; other parameters: X = 30, 
Y = 1, and 2DlAt = 1.0. (b) A typical shape of a surface generated by Kpz equation 
at t = 1ooO. Other parameters are the same as in (U). 

We thus integrated (4) numerically in both d = 1 and d = 2 using the Euler 
method on a discrete space mesh with A i  = 1. A typical time step used was 
At  = 0.01. We checked that smaller time steps do not change the results in any 
important mannert. 'Ib obtain reasonable statistics, for each set of system parameters 

t We note that for finite mesh sizes a term with a form vzVzh may or may not be generaled. If it is 
i n d d  generated, vZ will be ve'y small and can be made arbilraniy small by reducing the mesh sizes, or 
by increasing the system sizc L. In any casc, we have not detected the presence of such a term in any 
appreciable fashion for the systems studied. 
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we typically averaged over 100 runs. For initial conditions we set h = 0 at all the 
sites. Figure 3(a) shows the interface shape of our model after at t = loo0 for a 
system of linear size L = 100. This is to be compared with the interface shown in 
figure 3(b) generated hy the KPZ equation. Obviously the two interface morphologies 
are quite different From these figures we clearly see that surface diffusion is not a 
very efficient relaxation mechanism for smoothing out large wavelength fluctuations, 
as expected. On the other hand, relaxation by desorption is better at smoothing out 
these large wavelength fluctuations but the surface remains coarser on small length 
scales. 

N Govind and H Guo 

10-1 I . . . m_ . . , . .... . . --ml 
I 1  1 I -4.2 t / i  

Flgare 4. Resub in WO interface dimensions. F i y r e  5. Results in two interface dimensions. Lag- 
Lag-log plot of width W ( t )  as a function of log plot of the width W against size L at very 
time t .  Each CuNe corresponds to an average of large times when W is saturated. The slope gives 
100 independent mm on systems with linear size a value of x = 0.82f0.03. System parameters are 
L = 50. ’Ihe upper curve used X = SO and the the same as those used in figure 3(a). 
laver one used X = 30. Other parameters are the 
same as those used in figure 3(0) Ihe slope gives 
an estimate of the value of f l =  0.11 f 0.01 

The scaling exponents of the interface correlation, p and x were evaluated from 
log-log plots of the interface width W ( L , t )  as a function of t and L, shown 
in figures 4 and 5. In the physically relevant dimension d = 2, we obtained 
x = 0.82 f 0.03 and p = 0.22 f 0.01. We have checked that these values are 
stable against changes of system parameters. For example, changing X from 30 to 50 
gives the same result, also shown in figure 4. The exponent p can also be evaluated 
using the two-point correlation function, G ( t )  = ( ( h ( z , t  + T) - h(z,T))’), since 
G(t )  - fZ@ at intermediate times. The value of p obtained this way is 0.21f0.02 
which is consistent to within error bars. These exponents are compared with those 
obtained using the linear part of (4): p = 0.25 and x = 1. We see that the nonlinear 
term in (4) helps reduce the value of x from its marginal value of 1. In the model 
of Lai and Das Sarma [12], where they employed a different nonlinear term, the 
exponents are: p = 1/5 and x = 2/3. Our results are clearly different although p 
is somewhat close to theirs. We may conclude that our model helongs to a different 
universality class. 
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Figure 6. Results in one interface dimension. Log- 
log plot of widlh W ( t )  against t. Each cuwe 
corresponds lo an average of 100 independent runs 
on aystems with L = 512. h e r  10 higher CUNS 
correspond to X = 10,s. 40,50 respectively. Ihe 
slope gives the value of @ = 0.39 f 0.03 for the 
ouo largest value of A. 

Flyre 7. Results in one interface dimension. Lag- 
log plot of width W against size L at very large 
limes. The slope gives a value of x = 1.40* 0.02. 

We have also determined the scaling exponents at the physically less relevant 
dimension d = 1: p = 0.39 and x = 1.40. Figures 6 and 7 show log-log plots of the 
interface width W as a function of time t and system size L which determine the 
exponents. The two lower curves in figure 6 are for smaller values of the nonlinear 
coupling strength X and are still in the crossover regime. While the value of x is 
lowered somewhat from that of the linear case where x = 3/2, it is still higher than 
the physical@ marginal value 1. In this case, W ( L , t  - w ) / L  - LX-' diverges 
when L -+ CO, indicating a breakdown of the solid-on-solid condition imposed on the 
model (4). A similar situation exists in other models where relaxation is controlled 
by surface diffusion, such as the model of Lai and Das Sarma [12] and lattice models 
in [21, 22, U]. 

3. Summary 

lii -w-e have aa&.; a phyy;a;b xl*adK,gtfi; mo&.; -whish ij 
relevant in. describing kinetic roughening phenomena, in the hydrodynamic limit, of a 
growing interface where surface relaxation is controlled by diffusion. In our model the 
local growth rate is proportional to a gradient expansion of the local curvature and is 
different from that of Lai and Das Sarma in the nonlinear term. This leads to different 
dynamic exponents x and p. These exponents were determined by numerically by 
solving the interface equation (4). We note that the presence of the nonlinear term 
reduces the value of roughening exponent x in both the one and two interface 
dimensions from that of the corresponding linear model. In particular, in d = 2 we 
found x w 0.82 which is considerablely larger than that of the KFT model [7,24]. This 
indicates that surface diffusion is not strong enough in SUppreSing kinetic roughening 
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at large length scales. Finally we note that models with surface diffusion and non- 
conserved noise seem to give rather large values of the roughening exponent X. O n  
the other hand, for MBE growth one would expect x to be small. It will be interesting 
to see what effects will alter this situation [25]. 
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